

Commercial High-Purity Water Systems and Applications

Overview

- High-purity water: definitions
- High-purity water: methods
 - Distillation
 - DeionizationMembrane filtration (RO)
 - RO + Electro DI
- Commercial RO applications
- RO system components
- RO system sizing/selection

High Purity Water

Conductivity	Residicity
0.01 a5	100 560
0.053.45	18.0-MS2
0.1 45	10 MS2
105	1.5432
10 95	0.1.5452
100 a5	0.01 3422
1 11 15	1 ki

- "Water from which a significant portion of impurities have been removed" (typically 90% or more).
- "Impurities" = suspended solids, dissolved solids, microorganisms
- Levels of dissolved solids measured in units:
 - Ohms cm of resistivity
 - Micromhos-cm/microsiemens of conductivity
 - PPM of TDS (total dissolved solids)
 - (varies by solids but is approximately = to micromhos X 0.67)

Different Levels of High-Purity

- Typical tap water:
 - 100 450 ppm TDS
 - o 6670 1490 ohms-cm resistivity
 - 150 670 micromhos-cm/microsiemens conductivity

• Humidification Systems (typical):

- Approx 10 ppm TDS
- o 67,000 ohms-cm resistivity
- o 15 micromhos-cm/microsiemens conductivity

Different Levels of High-Purity

- Clinical & Laboratory Standards Institute/ASTM:
 - CLSI Type III:
 - Res: 100,000 ohms, Cond: 10 $\mu S,$ TDS: approx 6.7 ppm
 - Typical for medical sterilization equipment
 - ASTM/CLSI Type II:
 - Res: 1,000,000 ohms, Cond: 1 µS, TDS: approx 0.67 ppm
 - Typical for laboratory fixtures/equipment
 - ASTM Type I:
 - Res: 18,000,000 ohms, cond: 0.056 μS, TDS: approx 0.038 ppm
 - Used for semiconductor manufacturing

Method 1: Distillation

- Boil water, capture steam
- Very energy intensive!
- Often multiple passes

Purity level for single pass distillation (typical):

- 6.7 ppm TDS:
- 100,000 ohms resistivity
- 10 μS conductivity

Method 2: Deionization

- Atoms and molecules with a positive or negative charge are called "ions."
 - Cations = Positively charged ions
 - Ex: calcium, iron, magnesium, sodium, hydrogen, copper, aluminum, etc.
 - Anions = Negatively charged ions
 - Ex: silica, bicarbonates, tannins, chloride, fluoride, etc.

Method 2: Deionization

- Water passes through cation (++) resin bed, cations removed, - exchanged for H+ (hydrogen)
- Water passes through anion (--) resin bed, anions removed, - exchanged for OH- (hydroxide)
- H + OH = H20
- Media needs frequent regeneration
 - Hydrochloric acid for cation resin
 - Sodium hydroxide for anion resin
 - Usually done off-site
 - Frequent, Expensive exchange services!

Method 2: Deionization

- Purity level for dual bed DI (typical):
 - 6.7 13.4 ppm approx TDS:
 - 100,000 50,000 ohms resistivity

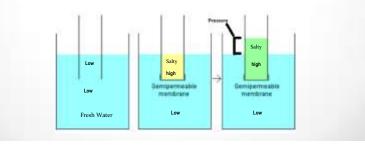
\$

\$\$

\$\$\$

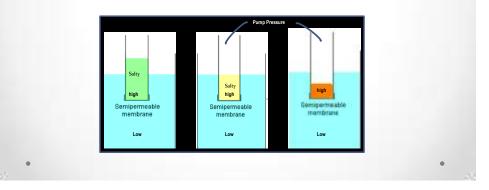
10 - 20 μS conductivity

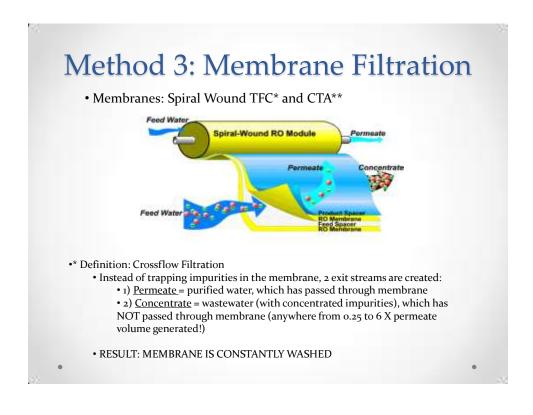
•


- Purity level for mixed bed DI (typical):
 - 0.067 (or less) ppm approx TDS:
 - 10,000,000 (or more) ohms resistivity
 - 0.1 (or less) µS conductivity
- Purity level for dual bed followed by mixed bed DI (typical):
 - 0.038 ppm TDS:
 - 18,000,000 ohms resistivity
 - 0.056 µS conductivity

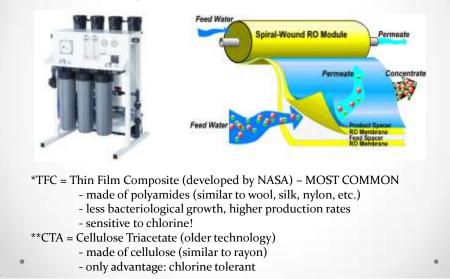
Method 3: Membrane Filtration

• Definition: Osmosis


• "movement of a solvent through a semipermeable membrane (as of a living cell) into a solution of higher solute concentration that tends to equalize the concentrations of solute on the two sides of the membrane."


- Actually creates "osmonic pressure"
- Temperature-dependent

Method 3: Membrane Filtration


- Definition: Reverse Osmosis
 - Overcoming (and reversing) osmonic pressure through a semi-permeable membrane, usually via a high-pressure pump. (typically 125-250 psi)
 - Some residential systems can work at 30 psi
 - Some desalinization systems work at 900+ psi

Method 3: Membrane Filtration

Membranes: Spiral Wound TFC* and CTA**

Method 3: Membrane Filtration

- Typical commercial RO membranes:
 - NaCl rejection rates: 96% 98.5%
 - Operating pressure 100 150 psi
 - Filtration down to 0.1 nm (0.1 billionth of a meter)
 - = 0.0001 micron
 - Also known as "hyperfiltration"

• Other membranes offer:

- Higher rejection rates (up to 99%)
- Lower energy consumption (less pressure required)
- Ability to filter brackish water and seawater

Method 3: Membrane Filtration

- Similar technologies with higher production rates:
 - Nanofiltration
 - NaCl rejection rates: 80%-90%
 - Filtration down to 1 nm (1 billionth of a meter)
 - = 0.001 micron
 - Ultrafiltration
 - Filtration down to 3 nm (3 billionths of a meter)
 - = 0.003 micron
 - Microfiltration
 - Filtration down to 50 nm (50 billionths of a meter)
 - = 0.05 micron

0.2 micron adequate to remove approx 99.9% of bacteria

Method 4: Electrodionization (EDI)

- Always follows a Reverse Osmosis system
- Can be used to reach Type I (semi-conductor) quality
- Membrane technology + DI resin + electrical field
 - = virtually complete removal of all dissolved solids
 - = continuous regeneration of DI media
 - Electrical field breaks H20 into H+ and OH- for constant media regeneration without chemicals
 - continuously washed membrane (like RO)
- Sensitive to water quality!
- Knowledgeable maintenance staff required!

Method 4: Electrodionization (EDI)

High-Purity Water Systems

- Typical applications:
 - Sterilization equipment
 - Humidification systems
 - Steam boilers
 - Drinking water systems
 - Industrial process systems
 - Carwash rinse systems
 - Laboratories
 - o ... and more

- Reverse Osmosis Unit
 - Solenoid valve, pre-filters, high pressure pump(s), membranes, housings, flow meters, pressure gauges, controls, aluminum frame
 - 100 GPD 200,000+ GPD available
 - Concentrate recycle option
 - Control/monitoring options
 - Float switch, pressure switch, or ultrasonic level controls
 - Dual pass for Type II water

- Thermostatic Mixing Valve:
 - (Pre-RO unit)
 - RO units operating range: 40° 105°
 - Typical temp: 77°F
 - At 50°: 42% production loss
 - At 61°: 27% production loss
 - At 86°: 16% production increase
 - Hot and cold water supplies required

- Sediment Filter:
 - o (Pre-RO unit)
 - Pre-screens suspended solids
 - Cartridge, bag, or backwashing
 - Psid gauges necessary for cartridge/bag filters!
 - Often included on RO system frame

- Water Softener:
 - (Pre-RO unit)
 - Removes calcium, and iron (hardness) to protect membrane from fouling
 - o Weak cation exchange media
 - Backwashes with saltwater
 - Sized to regenerate every 3 7 days, twin alternating system needed for 24 hour soft water

- Carbon Filter:
 - o (Pre-RO unit)
 - o Granulated activated carbon
 - Destroys chlorine and chloramines (membrane protection)
 - Backwash every 3 days to remove trapped sediment
 - Media replacement every 3-5 years (typical)
 - Twin alternating system needed for 24 hour protection

- Pre-Treat Injection System:
 - o (Pre-RO unit)
 - Injects chemicals to protect membrane from silica over ippm, metal oxides, hardness
 - Can be used in place of ion exchange (water softener)
 - Often includes float switch for RO unit shutdown on empty chemical tank

- DI Post-Polishing Filters:
 - o (Post-RO unit)
 - Used to further purify water (down to Type II or III levels)
 - Replaceable cartridges
 - Fiberglass exchange tanks
 - Additional TDS monitoring

Commercial RO System Components

- Storage Tank:
 - (Post-RO unit)
 - Atmospheric polyethylene tank (most applications)
 - 100 5000 gallons (typical)
 - Float switch or ultrasonic level
 - Overflow, drain valve, suction outlet, recirc return (optional)
 - Fiberglass, hydropneumatic tank (select applications)
 - 30 120 gallons (typical)
 - Pressure switch control

13

- Delivery Pump(s):
 - o (Post-RO unit)
 - Repressurize water for fixtures/equipment
 - o 316 Stainless steel required!
 - Redundant pump recommended
 - Continuous operation, pressure switch, or VFD control

- Ultraviolet Lamp(s):
 - o (Post-RO unit)
 - Destroy any bacteria from tank
 - Eliminate need for costly / lengthy RO unit disinfection
 - Monitors available
 - Typically followed by 0.1 micron (or lower) cartridge filter w/ psid gauge.

- Backpressure Valve:
 - (On recirc return line)
 - Stainless steel
 - Globe or needle valve
 - Used to pressurize loop on continuous recirc systems
 - Pressure gauge required

- Often pre-plumbed skid systems
- Piping materials
 - Sch. 80 PVC
 - LXT
 - 316 Stainless steel
 - Polypropylene
 - PVDF

Commercial RO System Sizing

- Critical Information:
 - o Application
 - o Gallons per day (GPD) water required
 - Gallons per minute (GPM) water required (peak use)
 - o Duration of peak use periods/ frequency of use
 - o Feed water quality
 - Feed water temperature
 - o Product water quality requirements
 - Available space
 - Pumping details (gpm, head)
 - o Electrical requirements

Commercial RO System Sizing

- Example: hospital sterilization system:
 - 3 sterilizers to use 30 gal. per cycle, cycling avg. 2 times per hour X 24 hours. Flow of 10 GPM per unit.
 - Type III water required (5 ppm TDS, 100,000 ohms res.)
 - Delivery pump outlet pressure requirement 55 psi
 - Incoming water quality: 103 ppm of TDS, 6 GPG hardness, 1 ppm cl city water (no Fe, minimal silica)
 - Incoming water temp: 55°F
 - o 10' X 20' room available

- 3 sterilizers to use 30 gal. per cycle, cycling avg. 2 times per hour X 24 hours
 - \circ = 4320 gallons per day (GPD) required
 - $\circ = 180$ gallons per hour (avg)
- 3 sterilizers at 10 GPM = max GPM flow: 30 GPM

Commercial RO System Sizing

• Selected RO Unit:

Produces 7000 GPD @ 77°F

- min 96% rejection rate = max 4 ppm TDS in permeate
- 5000 GPD system was NOT selected!
 - o Extra capacity "buffer" needed
 - Running system close to capacity = BAD

Commercial RO System Sizing

- Selected Storage Tank:
 - o 500 gallon, vertical, polyethylene tank
 - At normal use (2 cycles per sterilizer per hour), tank full
 - Enough capacity to withstand 2 hours of double use! (4 cycles per hour, per sterilizer
 - o Includes high level float switch for RO unit operation
 - Includes low level float switch for pump shutdown, 1" recirc return line, including stainless globe valve and pressure gauge

Commercial RO System Sizing

- Other Selected Components:
 - Twin, alternating water softener:
 - 90,000 grains capacity/tank (system regeneration 4-5 days)
 - Flow of 10 GPM (system feed rate) at 3 psid
 - Twin, alternating carbon filter:
 - 8 cu. ft. GAC/ tank = approx: 2.8 mil. gal of 1 ppm cl removal
 X 2 tanks = 5,600,000 gal of cl removal
 - = approx 3 years service before media replacement

Commercial RO System Sizing

- Other Selected Components:
 - Repressurization Pumps:
 - 2 pumps
 - Stainless, 5 HP, centrifugal
 - Each pump: 30 GPM @ 60 psi
 - Pumps wired for alternating service (redundancy)

• UV Germicidal Lamp:

- 39.1 GPM rating @ 30 mJ/cm2 (99.9% kill rate)
- o Includes UV and lamp life monitor w/BMS output
- Followed by 0.1 micron cartridge filter array

Questions?

