Wastewater Recycling in Buildings: Best Practices from Down Under

Onsite Wastewater Reuse is moving the needle in water conservation in the built environment like never before.

But you have to do it RIGHT...

And it's not easy to do right.

If Done Right...

- **✓** SAFE
- **✓ RELIABLE**
- **✓ ECONOMICAL**
- **✓ Viable Conservation Option**

And the Potential is...

HUGE!!

90 installations in Greater Sydney = 13 billion gallons a year saved

Multiple Conservation Options Needed

- •HE/Low Flow Fixtures
- •Rain/Stormwater Reuse

Onsite Wastewater ReuseUptake has not been rapid.... Why?

Challenge:

How to **Safely** and **economically** implement and manage schemes over their life-cycle

So How Is It Done Right?

AGWR – International Best Practice Framework

12 ELEMENTS

- 1. Commitment to responsible use and management of recycled water quality
- 2. Assessment of the recycled water system
- 3. Preventive measures for recycled water management
- 4. Operational procedures and process control
- 5. Verification of recycled water quality and environmental performance
- 6. Management of incidents and emergencies
- 7. Operator, contractor and end user awareness and training
- 8. Community involvement and awareness
- 9. Validation, research and development
- 10. Documentation and reporting
- 11. Evaluation and audit
- 12. Review and continuous improvement

"Waste" water - Is This the Future?

Decentralized Approach

Greywater Reuse

- Non-potable reuse
- 70% of waste stream (residential/hospitality)
- Conserve up to 60%
- Dual plumbing
- Robust treatment!!
- Targets: multifamily residential and hospitality

Residential/Hospitality
Greywater Supply

56%

Office/Institutional

Greywater Supply

Source: Whitepaper on Graywater, Bahman Sheikh, 2010, WEF, Water Reuse Assoc, AWWA

3%

Source: Adapted from The Pacific Institute, The Potential for Urban Water Conservation in California. Mayer *et al.*, 1999, Gleick *et al.*, 2003.

Blackwater Reuse

- Non-potable reuse
- 100% of waste stream
- Conserve up to 90%
- No dual plumbing
- Retrofits/existing bldgs
- No infrastructure, no problem
- Targets:
 Low potable users Office/institutional,
 business parks, airports,
 off grid projects

The Future is Decentralized?

Not IF...

But WHEN

The Future is Decentralized?

- ✓ Technology on the rise, cost on the decline
- ✓ Sustainability goals
- √ New Regulations/Code
 - NSF 350
 - EPA U.S. Guidelines for Water Reuse
 - IGCC
 - IAPMO Green
 - New laws encouraging onsite reuse in some cities
 - Grants / Rebates for onsite reuse

Growing Freshwater Demand

Waning Freshwater Supply

Water/Sewer Infrastructure Woes

Smart Growth for New Developments

It's Time to WAKE UP!!!

The Future is Decentralized?

More Practical than Ever Before

✓ SAFE

✓ RELIABLE

✓ ECONOMICAL

Recipe for Success

√ Safe

✓ Reliable

✓ Economical

AGWR – International Best Practice Framework

12 ELEMENTS

- 1. Commitment to responsible use and management of recycled water quality
- 2. Assessment of the recycled water system
- 3. Preventive measures for recycled water management
- 4. Operational procedures and process control
- 5. Verification of recycled water quality and environmental performance
- 6. Management of incidents and emergencies
- 7. Operator, contractor and end user awareness and training
- 8. Community involvement and awareness
- 9. Validation, research and development
- 10. Documentation and reporting
- 11. Evaluation and audit
- 12. Review and continuous improvement

Continuity from A to Z

Risk Management

How can you be sure *every ounce* of treated water is safe for reuse?

Validation (Can It Work?)

Verification Sampling (Did It Work?)

Risk Management

How can you be sure *every ounce* of treated water is safe for reuse?

Verification Sampling (Did It Work?)

Integrated Risk Management

How can you be sure *every ounce* of treated water is safe for reuse?

HACCP - Critical Control Points
24/7 Web-based Remote Monitoring

Intergrated Risk Management

How can you be sure *every ounce* of treated water is safe for reuse?

Operational Sampling (Is It Working Now?)

Real-time Quality Control

Less Onsite Supervision

Less End of Pipe Sampling

Less Operational Cost

More Safe, Less Cost

Proven Technology Turn-Key Treatment System

Safe, Reliable and Economical: Things to Remember

1. A to Z Solution

... Critical for Seamless Integration

2. Integrated & Automated Controls

...Risk Management as Basis of Design – Failure Sensors Won't Do

3. Turn-Key / Packaged Technology

...Science Project Otherwise

4. Proven Track Record is Irreplaceable

... Where's the Data??

The Alternative...

Vancouver, BC Convention Center

All Under ONE Roof

Tools Make Life Easier

Water Reuse Calculator

Calculator: To determine estimated savings, insert consumption values based on fixtures and fixture fittings installed

Fixture Type	Consumption	Daily Uses	Duration	Occupants	Daily Water Use (gal)
1.28 gpf toilet - male (gallons per flush)	1.28	1	1	2,500	3,200
1.28 gpf toilet - female (gallons per flush)	1.28	4	1	2,500	12,800
0.5 gpf urinal - male (gallons per flush)	0.5	3	1	2,500	3,750
Kitchen sink - 2.2 gpm	2.2	1	0.25	5,000	2,750
Commercial Lavatory Faucet - 0.5 gpm	0.5	4	0.25	5,000	2,500
Showerhead - 1.5 gpm	1.5	0.01	5	5,000	375
Cooling Tower make-up					10,000
Irrigation	Landscaped area, acres	Irrigations per week	Irrigation rate, inches		
		1	3	0.5	6,277

Annual Work Days	26

WATER SAVINGS SUMMARY		
(Projected Annual Savings from	n Baseline Water Usage)	
High-Efficiency Fixtures	2,080,000	16.1%
HE + Greywater Reuse	2,827,500	21.9%
HE + Blackwater Reuse	8,677,500	67.2%
HE + Blackwater Reuse + Sewer Mining	11,446,994	88.7%

High-Efficiency Fixt	ures Water Usage
Total Daily Demand	41,652
Total Annual Usage	10,829,494
Annual Savings	2,080,000
% Reduction	-16.1%

Important Daily Totals		
Greywater Supply	2,875	
Blackwater (total w/w) Supply	25,375	
Toilet/Urinal Flushing Demand	19,750	
Non-Potable Demand	36,027	
Potable Demand	5,625	
Total Daily Water Demand	41,652	

_			
	Greywater Reuse		
	2,875	daily savings (recycled daily)	
	38,777	new daily water usage	
	10,081,994	new annual water usage	
	747,500	annual water savings	
% Reduction	-6.9%in addition to HE water savings		
otal % Reduction	-21.9%HE fixtures & greywater reuse		

		Blackwater Reuse	
	25,375	daily savings (recycled daily)	
	16,277	new daily water usage	
	4,231,994new annual water usage		
	6,597,500	annual water savings	
% Reduction	-60.9%in addition to HE water savings		
Total % Reduction	-67.2%HE fixtures & blackwater reuse		

Blackwater Reuse + Sewer Mining to Meet Non-Potable Demand

1,462,500new annual usage w/ sewer mining

-88.7%HE fixtures, blackwater reuse & sewer mining

Total % Reductio

Wastewater Reuse Cost Analysis

2,600 gal/day Multifamily Housing

Master Planned Sustainable Community

5x Greywater Plants

Luxury Condominiums

2,600 gal/day Luxury Condominiums

3,000 gal/day
Commercial Office Tower

26,000 gal/day Canberra Airport Business Park

26,000 gal/day Hotel, Casino and Sports Complex

- 27-story development
- 6 star Green Star
- 2012 CTBUH's Most Outstanding Tall Building in Australasia region
- Recycling 26,000 gal/day of blackwater
- Toilet/urinal flushing and cooling tower reuse
 - 1 Bligh Street Video

Sewer Mining

Want to learn more about design & technical side?

Go to ASPE.org for 'Wastewater Reuse Technically Speaking' webinar

